Annual Atmospheric Corrosion of Carbon Steel Worldwide. An Integration of ISOCORRAG, ICP/UNECE and MICAT Databases

Author:

Chico Belén,Díaz Iván,Simancas Joaquín,Morcillo ManuelORCID,

Abstract

In the 1980s, three ambitious international programmes on atmospheric corrosion (ISOCORRAG, ICP/UNECE and MICAT), involving the participation of a total of 38 countries on four continents, Europe, America, Asia and Oceania, were launched. Though each programme has its own particular characteristics, the similarity of the basic methodologies used makes it possible to integrate the databases obtained in each case. This paper addresses such an integration with the aim of establishing simple universal damage functions (DF) between first year carbon steel corrosion in the different atmospheres and available environmental variables, both meteorological (temperature (T), relative humidity (RH), precipitation (P), and time of wetness (TOW)) and pollution (SO2 and NaCl). In the statistical processing of the data, it has been chosen to differentiate between marine atmospheres and those in which the chloride deposition rate is insignificant (<3 mg/m2.d). In the DF established for non-marine atmospheres a great influence of the SO2 content in the atmosphere was seen, as well as lesser effects by the meteorological parameters of RH and T. Both NaCl and SO2 pollutants, in that order, are seen to be the most influential variables in marine atmospheres, along with a smaller impact of TOW.

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. ISOCORRAG. International Atmospheric Exposure Program: Summary of Results;Knotkova,2010

2. Corrosion of Metals and Alloys, Corrosivity of Atmospheres, Classification,1992

3. Corrosion of Metals and Alloys, Corrosivity of Atmospheres, Classification, Determination and Estimation,2012

4. Corrosion of Metals and Alloys, Corrosivity of Atmospheres, Guiding Values for the Corrosivity Categories,2012

5. Corrosion of Metals and Alloys, Corrosivity of Atmospheres, Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3