Cunninghamia lanceolata Canopy Relative Chlorophyll Content Estimation Based on Unmanned Aerial Vehicle Multispectral Imagery and Terrain Suitability Analysis

Author:

Zhang Luyue12,Su Xiaoyu12,Liu Huan12,Zhao Yueqiao12,Gao Wenjing12,Cheng Nuo12,Lai Riwen12ORCID

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350028, China

2. University Key Lab for Geomatics Technology and Optimized Resources Utilization in Fujian Province, Fuzhou 350002, China

Abstract

This study aimed to streamline the determination of chlorophyll content in Cunninghamia lanceolate while achieving precise measurements of canopy chlorophyll content. Relative chlorophyll content (SPAD) in the Cunninghamia lanceolate canopy were assessed in the study area using the SPAD-502 portable chlorophyll meter, alongside spectral data collected via onboard multispectral imaging. And based on the unmanned aerial vehicle (UAV) multispectral collection of spectral values in the study area, 21 vegetation indices with significant correlation with Cunninghamia lanceolata canopy SPAD (CCS) were constructed as independent variables of the model’s various regression techniques, including partial least squares regression (PLSR), random forests (RF), and backpropagation neural networks (BPNN), which were employed to develop a SPAD inversion model. The BPNN-based model emerged as the best choice, exhibiting test dataset coefficients of determination (R2) at 0.812, root mean square error (RSME) at 2.607, and relative percent difference (RPD) at 1.942. While the model demonstrated consistent accuracy across different slope locations, generalization was lower for varying slope directions. By creating separate models for different slope directions, R2 went up to about 0.8, showcasing favorable terrain applicability. Therefore, constructing inverse models with different slope directions samples separately can estimate CCS more accurately.

Funder

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3