Affiliation:
1. Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
2. Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming 650500, China
3. Jiangxi Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
4. Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, China
Abstract
The management of understory vegetation and anthropogenic nitrogen (N) deposition has significantly resulted in a nutrient imbalance in forest ecosystems. However, the effects of canopy nitrogen addition and understory vegetation removal on N transformation processes (mineralization, nitrification, ammonification, and leaching) along with seasonal variations (spring, summer, autumn, and winter) remain unclear in subtropical forests. To fill this research gap, a field manipulation experiment was conducted with four treatments, including: (i) CK, control; (ii) CN, canopy nitrogen addition (25 kg N ha−1 year−1); (iii) UR, understory vegetation removal; and (iv) CN+UR, canopy nitrogen addition plus understory vegetation removal. The results revealed that CN increased net mineralization and nitrification by 294 mg N m−2 month−1 in the spring and 126 mg N m−2 month−1 in the winter, respectively. UR increased N mineralization and nitrification rates by 618 mg N m−2 month−1 in the summer. In addition, CN effectively reduced N leaching in the spring, winter, and autumn, while UR increased it in the spring and winter. UR increased annual nitrification rates by 93.4%, 90.3%, and 38.9% in the winter, spring, and summer, respectively. Additionally, both net N ammonification and annual nitrification rates responded positively to phosphorus availability during the autumn. Overall, UR potentially boosted nitrification rates in the summer and ammonification in the spring and winter, while CN reduced N leaching in the spring, winter, and autumn. Future research should integrate canopy nitrogen addition, understory vegetation removal, and phosphorus availability to address the global N deposition challenges in forest ecosystems.
Funder
National Natural Science Foundation of China
Xingdian Scholar Fund of Yunnan Province
Double Top University Fund of Yunnan University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献