Visual Detection of Biomolecules Using Concentration Dependent Induced Aggregation of Plasmonic Gold Nanoparticles

Author:

Farrell Monique,Pradhan Aswini

Abstract

Significant advancement has occurred in the detection methods of solution-based analytes. High-pressure liquid chromatography, gas chromatography, and other systems used for analyses are quite expensive. Therefore, there is a need for new methods and for the visible detection of analytes. Here, we demonstrate that 3-aminopropyl triethoxysilane (APTES) could impact the stability, optical, and morphology of gold nanoparticles (AuNps) in a colloidal solution. These impacts can be used to create a sensitive visual detection system. The strong impact of the APTES concentration on the ultraviolet–visible absorption spectra of the solutions is illustrated, which displays systematic and extensive red shifts. The presence of denatured proteins within a therapeutic drug product can induce a series of adverse effects. This report describes a fast, low cost, sensitive, and user-friendly platform where the plasmonic nanoparticles create visual biosensing of denatured proteins. Artificially heat stressed ferritin, glutathione, and insulin coupled to AuNps are exposed to ATES and upon denaturation of the protein or peptide, systematic blue or red shifts are observed in the absorbance spectra of the AuNps/biomolecules, and aminosilane solution. This serves as a proof-of-concept for a fast in-solution detection method for heat-stressed proteins or peptides.

Funder

National Science Foundation Centers of Research Excellence in Science and Technology

Publisher

MDPI AG

Subject

Earth-Surface Processes

Reference88 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3