Time Series Electrical Motor Drives Forecasting Based on Simulation Modeling and Bidirectional Long-Short Term Memory

Author:

Le Thi-Thu-Huong12ORCID,Oktian Yustus Eko12ORCID,Jo Uk3ORCID,Kim Howon3ORCID

Affiliation:

1. Blockchain Platform Research Center, Pusan National University, Busan 609735, Republic of Korea

2. IoT Research Center, Pusan National University, Busan 609735, Republic of Korea

3. School of Computer Science and Engineering, Pusan National University, Busan 609735, Republic of Korea

Abstract

Accurately forecasting electrical signals from three-phase Direct Torque Control (DTC) induction motors is crucial for achieving optimal motor performance and effective condition monitoring. However, the intricate nature of multiple DTC induction motors and the variability in operational conditions present significant challenges for conventional prediction methodologies. To address these obstacles, we propose an innovative solution that leverages the Fast Fourier Transform (FFT) to preprocess simulation data from electrical motors. A Bidirectional Long Short-Term Memory (Bi-LSTM) network then uses this altered data to forecast processed motor signals. Our proposed approach is thoroughly examined using a comparative examination of cutting-edge forecasting models such as the Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). This rigorous comparison underscores the remarkable efficacy of our approach in elevating the precision and reliability of forecasts for induction motor signals. The results unequivocally establish the superiority of our method across stator and rotor current testing data, as evidenced by Mean Absolute Error (MAE) average results of 92.6864 and 93.8802 for stator and rotor current data, respectively. Additionally, compared to alternative forecasting models, the Root Mean Square Error (RMSE) average results of 105.0636 and 85.7820 underscore reduced prediction loss.

Funder

MSIT (Ministry of Science and ICT), Korea

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3