Sar Ship Detection Based on Convnext with Multi-Pooling Channel Attention and Feature Intensification Pyramid Network

Author:

Wei Fanming1,Wang Xiao1ORCID

Affiliation:

1. College of Computer and Information Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

The advancements in ship detection technology using convolutional neural networks (CNNs) regarding synthetic aperture radar (SAR) images have been significant. Yet, there are still some limitations in the existing detection algorithms. First, the backbones cannot generate high-quality multiscale feature maps. Second, there is a lack of suitable attention mechanisms to suppress false alarms. Third, the current feature intensification algorithms are unable to effectively enhance the shallow feature’s semantic information, which hinders the detection of small ships. Fourth, top-level feature maps have rich semantic information; however, as a result of the reduction of channels, the semantic information is weakened. These four problems lead to poor performance in SAR ship detection and recognition. To address the mentioned issues, we put forward a new approach that has the following characteristics. First, we use Convnext as the backbone to generate high-quality multiscale feature maps. Second, to suppress false alarms, the multi-pooling channel attention (MPCA) is designed to generate a corresponding weight for each channel, suppressing redundant feature maps, and further optimizing the feature maps generated by Convnext. Third, a feature intensification pyramid network (FIPN) is specifically designed to intensify the feature maps, especially the shallow feature maps. Fourth, a top-level feature intensification (TLFI) is also proposed to compensate for semantic information loss within the top-level feature maps by utilizing semantic information from different spaces. The experimental dataset employed is the SAR Ship Detection Dataset (SSDD), and the experimental findings display that our approach exhibits superiority compared to other advanced approaches. The overall Average Precision (AP) reaches up to 95.6% on the SSDD, which improves the accuracy by at least 1.7% compared to the current excellent methods.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Stangl, G., Breit, H., Balss, U., and Schättler, B. (2010, January 25–30). TerraSAR-X mission status and system capabilities. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA.

2. Huang, Y., and Liu, C. (2018). Radar Technology for Environmental Monitoring: Challenges and Solutions, Springer.

3. Currie, N.F. (2017). Radar Remote Sensing for Environmental Monitoring, CRC Press.

4. Marine Target Detection and Tracking in SAR Imagery: Algorithms and Applications;Zou;Remote Sens.,2019

5. Liu, T., Lampropoulos, G.A., and Fei, C. (2008, January 26–30). CFAR ship detection system using polarimetric data. Proceedings of the 2008 IEEE Radar Conference, Rome, Italy.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3