Silicon-Cantilever-Enhanced Single-Fiber Photoacoustic Acetylene Gas Sensor

Author:

Zhang Zhengyuan1,Fan Xinhong1,Xu Yufu2,Wang Yongqi1,Tang Yiyao1,Zhao Rui1,Li Chenxi2,Wang Heng2,Chen Ke2ORCID

Affiliation:

1. State Grid Gansu Electric Power Research Institute, Lanzhou 730030, China

2. School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China

Abstract

A single-fiber photoacoustic (PA) sensor with a silicon cantilever beam for trace acetylene (C2H2) gas analysis was proposed. The miniature gas sensor mainly consisted of a microcantilever and a non-resonant PA cell for the real-time detection of acetylene gas. The gas diffused into the photoacoustic cell through the silicon cantilever beam gap. The volume of the PA cell in the sensor was about 14 μL. By using a 1 × 2 fiber optical coupler, a 1532.8 nm distributed feedback (DFB) laser and a white light interference demodulation module were connected to the single-fiber photoacoustic sensor. A silicon cantilever was utilized to improve the performance when detecting the PA signal. To eliminate the interference of the laser-reflected light, a part of the Fabry–Perot (F-P) interference spectrum was used for phase demodulation to achieve the highly sensitive detection of acetylene gas. The minimum detection limit (MDL) achieved was 0.2 ppm with 100 s averaging time. In addition, the calculated normalized noise equivalent absorption (NNEA) coefficient was 4.4 × 10−9 W·cm−1·Hz−1/2. The single-fiber photoacoustic sensor designed has great application prospects in the early warning of transformer faults.

Funder

Science and Technology projects of State Grid Gansu Electric Power Company

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3