Affiliation:
1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
This paper presents a real-time underwater wireless optical communication (UWOC) system. The transmitter of our UWOC system is equipped with four blue LEDs, and we have implemented pre-emphasis technology to extend the modulation bandwidth of these LEDs. At the receiver end, a 3 mm diameter APD is utilized. Both the transmitter and receiver are housed in watertight chassis and are submerged in a water pool to conduct real-time underwater experiments. Through these experiments, we have obtained impressive results. The data rate achieved by our system reaches up to 135 Mbps, with a BER of 5.9 × 10−3, at a distance of 10 m. Additionally, we have developed a convenient method for measuring the underwater attenuation coefficient, using which we have found the attenuation coefficient of the water in experiments to be 0.289 dB/m. Furthermore, we propose a technique to estimate the maximum communication distance of an on–off keying UWOC system with intersymbol interference, based on the Q factor. By applying this method, we conclude that under the same water quality conditions, our system can achieve a maximum communication distance of 25.4 m at 80 Mbps. Overall, our research showcases the successful implementation of a real-time UWOC system, along with novel methods for measuring the underwater attenuation coefficient and estimating the maximum communication distance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献