Ab Initio Study on Dopant Relaxation Mechanism in Ti and Ce Cationically Substituted in Wurtzite Gallium Nitride

Author:

Alkhedher MohammadORCID,Majid Abdul,Bulut Niyazi,Elkhatib Samah ElsayedORCID

Abstract

The changes in properties of materials upon introduction of impurities is well documented but less is known about the location of foreign atoms in different hosts. This study is carried out with the motivation to explore dopant location in hexagonal GaN using density functional theory based calculations. The dopant site location of the individual dopants Ti, Ce, and Ti-Ce codoped wurtzite GaN was investigated by placing the dopants at cationic lattice sites as well as off-cationic sites along the c-axis. The geometry optimization relaxed individual dopants on cationic Ga sites but in the case of codoping Ce settled at site 7.8% away along [0001 ¯] and Ti adjusted itself at site 14% away along [0001] from regular cationic sites. The analysis of the results indicates that optimized geometry is sensitive to the starting position of the dopants. The magnetic exchange interactions between Ti and Ce ions are responsible for their structural relaxation in the matrix.

Funder

ASPIRE Award for Research Excellence 2019

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3