Experimental and Numerical Investigation of Static and Dynamic Characteristics of Bio-Oils and SAE40 in Fluid Film Journal Bearing

Author:

Sadiq Muhammad Imran,Ghopa Wan Aizon W.,Nuawi Mohd Zaki,Rasani Mohammad RasidiORCID,Mohd Sabri Mohd Anas

Abstract

Mineral-based oils are the market leaders when it comes to their consumption in different types of rotating machines. Recently, a lot of attention has been given to the bio-oils and lubricants due to their better thermophysical, tribological, and environmental characteristics for use in journal bearing and other rotating machines. The superior physical properties of bio-oils have instigated this research in order to evaluate their dynamic characteristics that can cause the harmful dynamic instabilities in rotating machinery. The dynamic characteristics of the fluid film are influenced by temperature, eccentricity ratio, and rotational speed. In this work, the effect of temperature is experimentally measured on the dynamic viscosity of bio-oils and mineral-based oil. The dynamic viscosity measured is then computationally used to estimate the hydrodynamic pressure response of three bio-oils (rapeseed, palm olein, and soybean) and SAE40, a mineral-based oil, to check their performance in the rotor bearing system. It is found that at 40 °C, the hydrodynamic pressure for SAE40 is observed to be 2.53, 2.72, and 3.32 times greater than those of rapeseed, palm olein, and soybean oil, respectively, whereas, at 125 °C, the hydrodynamic pressure for SAE40 is observed to be 8% and 4.3% less than those of rapeseed and palm olein, respectively, but 14% greater than that of soybean oil. Hence, the increasing temperature has less effect on the viscosity and hydrodynamic pressure of bio-oils compared to SAE40. Therefore, for high-temperature applications, the bio-oils can be used with further processing. The superior response of bio-oils is also an indication for better dynamic characteristics.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery;San Andrés,2006

2. Analytical solution of Reynolds equation under dynamic conditions

3. Effects of Nanoparticle Enhanced Lubricant Films in Dynamic Properties of Plain Journal Bearings at High Reynolds Numbers

4. An Analytical Method for the Determination of Temperature Distribution in Short Journal Bearing Oil Film

5. Effect of Bio Lubricants on the Dynamic Performance of Rotor Bearing System: A Mathematical Model;Sadiq,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3