Machine Learning in Disaster Management: Recent Developments in Methods and Applications

Author:

Linardos VasileiosORCID,Drakaki MariaORCID,Tzionas Panagiotis,Karnavas Yannis L.ORCID

Abstract

Recent years include the world’s hottest year, while they have been marked mainly, besides the COVID-19 pandemic, by climate-related disasters, based on data collected by the Emergency Events Database (EM-DAT). Besides the human losses, disasters cause significant and often catastrophic socioeconomic impacts, including economic losses. Recent developments in artificial intelligence (AI) and especially in machine learning (ML) and deep learning (DL) have been used to better cope with the severe and often catastrophic impacts of disasters. This paper aims to provide an overview of the research studies, presented since 2017, focusing on ML and DL developed methods for disaster management. In particular, focus has been given on studies in the areas of disaster and hazard prediction, risk and vulnerability assessment, disaster detection, early warning systems, disaster monitoring, damage assessment and post-disaster response as well as cases studies. Furthermore, some recently developed ML and DL applications for disaster management have been analyzed. A discussion of the findings is provided as well as directions for further research.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3