Abstract
(1) Background: Aspect-based sentiment analysis (SA) is a natural language processing task, the aim of which is to classify the sentiment associated with a specific aspect of a written text. The performance of SA methods applied to texts related to health and well-being lags behind that of other domains. (2) Methods: In this study, we present an approach to aspect-based SA of drug reviews. Specifically, we analysed signs and symptoms, which were extracted automatically using the Unified Medical Language System. This information was then passed onto the BERT language model, which was extended by two layers to fine-tune the model for aspect-based SA. The interpretability of the model was analysed using an axiomatic attribution method. We performed a correlation analysis between the attribution scores and syntactic dependencies. (3) Results: Our fine-tuned model achieved accuracy of approximately 95% on a well-balanced test set. It outperformed our previous approach, which used syntactic information to guide the operation of a neural network and achieved an accuracy of approximately 82%. (4) Conclusions: We demonstrated that a BERT-based model of SA overcomes the negative bias associated with health-related aspects and closes the performance gap against the state-of-the-art in other domains.
Subject
General Economics, Econometrics and Finance
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献