Abstract
Carrier aggregation (CA) is considered as a key enabling technology to provide higher rates for users in LTE/5G networks. However, the increased transmission rate is accompanied by higher energy consumption. The existing CA energy efficiency resource optimization allocation scheme in 5G does not fully consider the following two issues, namely, the impact of delayed channel state information feedback on the rationality of resource allocation and the increasing in energy consumption caused by frequent switching of component carriers (CCs) by narrowband users; this paper proposed a CA energy-efficient joint resource optimization allocation (PEJA) scheme based on channel information prediction. The proposed scheme (PEJA) fully considers the above two issues. Firstly, the algorithm of random forest predicting channel state information is designed. On the basis, the CA energy-efficient joint resource optimization allocation (PEJA) scheme based on channel information prediction is proposed. The simulation results show that the proposed algorithm PEJA has a higher energy efficiency and throughput than the comparison algorithm under different numbers of users and different transmission powers. The PEJA algorithm is more energy efficient than the PEJA-NC algorithm, which does not consider the CC handover of narrowband users. To sum up, the proposed PEJA energy-efficient resource allocation scheme maximizes system energy efficiency and achieves a higher throughput.
Funder
the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China
NSFC
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction