Validation of HIV-1 MA Shell Structural Arrangements and Env Protein Interactions Predict a Role of the MA Shell in Viral Maturation

Author:

Mangukia Tarana A.1,Santos Joy Ramielle L.1,Sun Weijie1,Cesarz Dominik1,Ortíz Hidalgo Carlos D.2ORCID,Marcet-Palacios Marcelo13ORCID

Affiliation:

1. Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada

2. Faculty of Biology, University of Havana, Havana 10400, Cuba

3. Department of Biological Sciences Technology, Laboratory Research and Biotechnology, Northern Alberta Institute of Technology, Edmonton, AB T5G 2R1, Canada

Abstract

The molecular structure of the type 1 human immunodeficiency virus (HIV-1) is tightly linked to the mechanism of viral entry. The spike envelope (Env) glycoproteins and their interaction with the underlying matrix (MA) shell have emerged as key components of the entry mechanism. Microscopy evidence suggests that the MA shell does not span the entire inner lipid surface of the virus, producing a region of the virus that completely lacks an MA shell. Interestingly, evidence also suggests that Env proteins cluster during viral maturation and, thus, it is likely that this event takes place in the region of the virus that lacks an MA shell. We have previously called this part of the virus a fusion hub to highlight its importance during viral entry. While the structure of the MA shell is in contention due to the unaddressed inconsistencies between its reported hexagonal arrangement and the physical plausibility of such a structure, it is possible that a limited number of MA hexagons could form. In this study, we measured the size of the fusion hub by analysing the cryo-EM maps of eight HIV-1 particles and measured the size of the MA shell gap to be 66.3 nm ± 15.0 nm. We also validated the feasibility of the hexagonal MA shell arrangement in six reported structures and determined the plausible components of these structures that do not violate geometrical limitations. We also examined the cytosolic domain of Env proteins and discovered a possible interaction between adjacent Env proteins that could explain the stability of cluster formation. We present an updated HIV-1 model and postulate novel roles of the MA shell and Env structure.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3