Evaluation of African Swine Fever Virus E111R Gene on Viral Replication and Porcine Virulence

Author:

Zhou Xintao123ORCID,Fan Jiaqi123,Zhang Yanyan23,Yang Jinjin23,Zhu Rongnian23,Yue Huixian23,Qi Yu23,Li Qixuan23,Wang Yu23,Chen Teng23,Zhang Shoufeng23,Hu Rongliang123ORCID

Affiliation:

1. College of Life Sciences, Ningxia University, Yinchuan 750021, China

2. Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130122, China

3. Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China

Abstract

African swine fever (ASF) is an acute infectious disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV), with up to a 100% case fatality rate. The development of a vaccine for ASFV is hampered by the fact that the function of many genes in the ASFV genome still needs to be discovered. In this study, the previously unreported E111R gene was analyzed and identified as an early-expressed gene that is highly conserved across the different genotypes of ASFV. To further explore the function of the E111R gene, a recombinant strain, SY18ΔE111R, was constructed by deleting the E111R gene of the lethal ASFV SY18 strain. In vitro, the replication kinetics of SY18ΔE111R with deletion of the E111R gene were consistent with those of the parental strain. In vivo, high-dose SY18ΔE111R (105.0 TCID50), administered intramuscularly to pigs, caused the same clinical signs and viremia as the parental strain (102.0 TCID50), with all pigs dying on days 8–11. After being infected with a low dose of SY18ΔE111R (102.0 TCID50) intramuscularly, pigs showed a later onset of disease and 60% mortality, changing from acute to subacute infection. In summary, deletion of the E111R gene has a negligible effect on the lethality of ASFV and does not affect the viruses’ ability to replicate, suggesting that E111R could not be the priority target of ASFV live-attenuated vaccine candidates.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3