Abstract
The present work investigates the formation and microstructural and micro-mechanical characterization of the recast layer that formed on Inconel 718 alloy in the course of the wire electro-discharge machining (WEDM). The as-machined surface contains globules, shallow cracks, and re-deposition of molten materials, together with the elements from the decomposition of wire electrode and electrolyte, which does not exceed beyond the surface of the recast layer. Under presently investigated machining parameters, the recast layer was about 6.2 ± 2.1 µm thick. There was no presence of a heat-affected zone (HAZ), as otherwise indicated for other hard-to-cut materials. The transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) investigations show that the microstructure of the recast layer is similar to that of bulk alloy. Micro-mechanical characterizations of the recast layer were investigated via in-situ micro-pillar compression on the micro-pillars fabricated on the recast layer. The strength of the superficial layer (1151.6 ± 51.1 MPa) was about 2.2 times higher than that of the base material (523.2 ± 22.1 MPa), as revealed by the in-situ micro-pillar compression.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献