Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers

Author:

Ungurean IoanORCID

Abstract

In automatic systems used in the control and monitoring of industrial processes, fieldbuses with specific real-time requirements are used. Often, the sensors are connected to these fieldbuses through embedded systems, which also have real-time features specific to the industrial environment in which it operates. The embedded operating systems are very important in the design and development of embedded systems. A distinct class of these operating systems is real-time operating systems (RTOSs) that can be used to develop embedded systems, which have hard and/or soft real-time requirements on small microcontrollers (MCUs). RTOSs offer the basic support for developing embedded systems with applicability in a wide range of fields such as data acquisition, internet of things, data compression, pattern recognition, diversity, similarity, symmetry, and so on. The RTOSs provide basic services for multitasking applications with deterministic behavior on MCUs. The services provided by the RTOSs are task management and inter-task synchronization and communication. The selection of the RTOS is very important in the development of the embedded system with real-time requirements and it must be based on the latency in the handling of the critical operations triggered by internal or external events, predictability/determinism in the execution of the RTOS primitives, license costs, and memory footprint. In this paper, we measured and compared the timing performance for synchronization throughout an event, semaphore, and mailbox for the following RTOSs: FreeRTOS 9.0.0, FreeRTOS 10.2.0, rt-thread, Keil RTX, uC/OS-II, and uC/OS-III. For the experimental tests, we developed test applications for two MCUs: ARM Cortex™-M4 and ARM Cortex™-M0+ based MCUs.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved TDD operation on Software-Defined Radio platforms towards future wireless standards;Computer Communications;2023-09

2. Timing and Performance Metrics for TWR-K70F120M Device;Computers;2023-08-14

3. Intelligent Gateway Based Human Cardiopulmonary Health Monitoring System;Journal of Sensors;2023-06-16

4. Investigating and Mitigating Contention on Low-End Multi-Core Microcontrollers;Proceedings of Cyber-Physical Systems and Internet of Things Week 2023;2023-05-09

5. Real-Time Operating System for Multitasking Control in the Robotics and Automation Industry;2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2023-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3