Abstract
In this article, the direct and inverse problems for the one-dimensional time-dependent Volterra integro-differential equation involving two integration terms of the unknown function (i.e., with respect to time and space) are considered. In order to acquire accurate numerical results, we apply the finite integration method based on shifted Chebyshev polynomials (FIM-SCP) to handle the spatial variable. These shifted Chebyshev polynomials are symmetric (either with respect to the point x = L 2 or the vertical line x = L 2 depending on their degree) over [ 0 , L ] , and their zeros in the interval are distributed symmetrically. We use these zeros to construct the main tool of FIM-SCP: the Chebyshev integration matrix. The forward difference quotient is used to deal with the temporal variable. Then, we obtain efficient numerical algorithms for solving both the direct and inverse problems. However, the ill-posedness of the inverse problem causes instability in the solution and, so, the Tikhonov regularization method is utilized to stabilize the solution. Furthermore, several direct and inverse numerical experiments are illustrated. Evidently, our proposed algorithms for both the direct and inverse problems give a highly accurate result with low computational cost, due to the small number of iterations and discretization.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献