A Comprehensive Multi-Scenario Routing Algorithm Based on Fuzzy Control Theory in Opportunistic Social Network

Author:

Yu Yao,Yu Jiong,Chen Zhigang,Wu Jia,Yan Yeqing

Abstract

With the flourishing of big data and the 5G era, the amount of data to be transmitted in the communication process is increasing, and end-to-end communication in traditional social networks has been unable to meet the current communication needs. Therefore, in order to improve the success rate of data forwarding, social networks propose that the sender of the message should reasonably choose the next hop node. However, existing routing and forwarding algorithms do not take into account nodes that are live in different scenarios, and the applicable next hop node metrics are also different. These algorithms only consider the forwarding preferences of the nodes during working hours and do not consider the forwarding preferences of the nodes during non-working hours. We propose a routing algorithm based on fuzzy decision theory, which aims at a more accurate decision on selecting the next hop. A routing and forwarding algorithm based on fuzzy decision is proposed in this paper. This algorithm symmetrical divides scenes in opportunistic social networks into working time and non-working time according to real human activity. In addition, metrics are designed symmetrically for these two scenarios. Simulation results demonstrate that, in the best case, the proposed scheme presents an average delivery ratio of 0.95 and reduces the average end-to-end delay and average overhead compared with the epidemic routing algorithm, the EIMSTalgorithm, the ICMT algorithm, and the FCNSalgorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3