A Trust Model Using Edge Nodes and a Cuckoo Filter for Securing VANET under the NLoS Condition

Author:

Soleymani Seyed Ahmad,Goudarzi Shidrokh,Anisi Mohammad Hossein,Kama Nazri,Adli Ismail Saiful,Azmi Azri,Zareei Mahdi,Hanan Abdullah Abdul

Abstract

Trust, as a key element of security, has a vital role in securing vehicular ad-hoc networks (VANETs). Malicious and selfish nodes by generating inaccurate information, have undesirable impacts on the trustworthiness of the VANET environment. Obstacles also have a negative impact on data trustworthiness by restricting direct communication between nodes. In this study, a trust model based on plausibility, experience, and type of vehicle is presented to cope with inaccurate, incomplete and uncertainty data under both line of sight (LoS) and none-line of sight (NLoS) conditions. In addition, a model using the k-nearest neighbor (kNN) classification algorithm based on feature similarity and symmetry is developed to detect the NLoS condition. Radio signal strength indicator (RSSI), packet reception rate (PDR) and the distance between two vehicle nodes are the features used in the proposed kNN algorithm. Moreover, due to the big data generated in VANET, secure communication between vehicle and edge node is designed using the Cuckoo filter. All obtained results are validated through well-known evaluation measures such as precision, recall, overall accuracy, and communication overhead. The results indicate that the proposed trust model has a better performance as compared to the attack-resistant trust management (ART) scheme and weighted voting (WV) approach. Additionally, the proposed trust model outperforms both ART and WV approaches under different patterns of attack such as a simple attack, opinion tampering attack, and cunning attack. Monte-Carlo simulation results also prove validity of the proposed trust model.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. B-SAFE: Blockchain-Enabled Security Architecture for Connected Vehicle Fog Environment;Sensors;2024-02-26

2. A survey on Machine Learning for IoT Trust Management;2023 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT);2023-12-10

3. Lightweight Blockchain-based Secuirity Protocol for Internet of Vehicle Things;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

4. Computationally Efficient Blockchain-based Privacy Preservation Approach for Internet of Vehicle Things;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

5. A Trust Model for Edge-Driven Vehicular Ad Hoc Networks Using Fuzzy Logic;IEEE Transactions on Intelligent Transportation Systems;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3