Evaluating Performance of Software Durability through an Integrated Fuzzy-Based Symmetrical Method of ANP and TOPSIS

Author:

Khan Suhel Ahmad,Alenezi MamdouhORCID,Agrawal Alka,Kumar RajeevORCID,Khan Raees Ahmad

Abstract

Acceptance of any new approach by the organizations depends upon the users’ needs. Currently, reducing the cost and time invested in maintenance is a major challenge for the practitioners. Moreover, symmetrical and optimal maintenance is the need of the hour and it can be achieved by increasing the durability of software. Many attributes of the quality may affect the durability of the software and identification of durability attributes is a crucial task at the early stage of software development. Thus, it is a problem that contains multi-criteria within it. With the help of quantitative estimation, software durability may be assessed symmetrically and increased. In this row, the authors of this article have attempted to posit an effective technique to assess the durability of software. Based on empirical data through research, the presenters of this article suggest that fuzzy-based symmetrical method of Analytic Network Process (ANP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) would be an accurate methodology for assessing the durability of software. For determining the efficacy of this assessment, the researchers took six alternative software of a University. The results, as presented in this paper, would serve as guidelines for the practitioners who aim at achieving the preferred software durability.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference23 articles.

1. Software architecture reliability analysis using failure scenarios

2. A New Standard for Quality Requirements

3. Cisco Global Cloud Index 2015–2020 https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf

4. The Durability of Software;Kelty,2015

5. Security durability assessment through fuzzy analytic hierarchy process

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3