Abstract
This paper presents and discusses the use of a Mixture Transition Distribution-like model (MTD) to account for covariates in Markovian models. The MTD was introduced in 1985 by Raftery as an approximation of higher order Markov chains. In the MTD, each lag is estimated separately using an additive model, which introduces a kind of symmetrical relationship between the past and the present. Here, using an MTD-based approach, we consider each covariate separately, and we combine the effects of the lags and of the covariates by means of a mixture model. This approach has three main advantages. First, no modification of the estimation procedure is needed. Second, it is parsimonious in terms of freely estimated parameters. Third, the weight parameters of the mixture can be used as an indication of the relevance of the covariate in explaining the time dependence between states. An illustrative example taken from life course studies using a 3-state hidden Markov model and a covariate with three levels shows how to interpret the results of such models.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献