Handling Covariates in Markovian Models with a Mixture Transition Distribution Based Approach

Author:

Bolano DaniloORCID

Abstract

This paper presents and discusses the use of a Mixture Transition Distribution-like model (MTD) to account for covariates in Markovian models. The MTD was introduced in 1985 by Raftery as an approximation of higher order Markov chains. In the MTD, each lag is estimated separately using an additive model, which introduces a kind of symmetrical relationship between the past and the present. Here, using an MTD-based approach, we consider each covariate separately, and we combine the effects of the lags and of the covariates by means of a mixture model. This approach has three main advantages. First, no modification of the estimation procedure is needed. Second, it is parsimonious in terms of freely estimated parameters. Third, the weight parameters of the mixture can be used as an indication of the relevance of the covariate in explaining the time dependence between states. An illustrative example taken from life course studies using a 3-state hidden Markov model and a covariate with three levels shows how to interpret the results of such models.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. A Model for High-Order Markov Chains

2. The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series

3. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues;Brémaud,1999

4. Maximum Likelihood from Incomplete Data via the EM Algorithm;Dempster;J. R. Stat. Soc. Ser. B (Methodol.),1977

5. A note on the mixture transition distribution and hidden Markov models

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3