The Impact of Nanoparticles Due to Applied Magnetic Dipole in Micropolar Fluid Flow Using the Finite Element Method

Author:

Ali LiaqatORCID,Liu Xiaomin,Ali BaghORCID,Mujeed Saima,Abdal SohaibORCID,Mutahir Ali

Abstract

The present work examines the effect of different magnetic nanoparticles and the heat transfer phenomena over the stretching sheet with thermal stratification and slips effect. The mixture of water (H 2 O) and ethylene glycol (C 2 H 6 O 2 ) is used as base fluid whereas the paramagnetic, diamagnetic, and ferromagnetic ferrites are taken as nanoparticles. In the presence of ferrite nanoparticles, the magnetic dipole has a significant effect in controlling the rate of heat transfer and the thermal boundary layers. By using suitable similarity transformations, the system of partial differential equations is transformed into nonlinear ordinary differential equations. The numerical solution of resulting equations is found out by using the variational finite element method. The effect of numerous emerging parameters on velocity, temperature, and micro-rotation velocity are represented graphically and analyzed numerically. It has been noticed that comparatively the diamagnetic ferrites have gained maximum thermal conductivity relative to the other nanoparticles. It was also observed that the thermal conduction of nanoparticles increases with the variation of volume fraction. Moreover, with increasing values of thermal stratification the thermal boundary layer thickness decreases and the heat transfer rate increases at the surface. Furthermore, the validation of code and the accuracy of the numerical technique has been confirmed by the assessment of current results with earlier studies.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3