Abstract
We investigate a novel nonlinear consensus from the extreme points of doubly stochastic quadratic operators (EDSQO), based on majorization theory and Markov chains for time-varying multi-agent distributed systems. We describe a dynamic system that has a local interaction network among agents. EDSQO has been applied for distributed agent systems, on a finite dimensional stochastic matrix. We prove that multi-agent systems converge at a center (common value) via the extreme waited value of doubly stochastic quadratic operators (DSQO), which are only 1 or 0 or 1/2 1 2 if the exchanges of each agent member has no selfish communication. Applying this rule means that the consensus is nonlinear and low-complexity computational for fast time convergence. The investigated nonlinear model of EDSQO follows the structure of the DeGroot linear (DGL) consensus model. However, EDSQO is nonlinear and faster convergent than the DGL model and is of lower complexity than DSQO and cubic stochastic quadratic operators (CSQO). The simulation result and theoretical proof are illustrated.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献