Abstract
In this paper, we propose a generalization of the so-called truncated inverse Weibull-generated family of distributions by the use of the power transform, adding a new shape parameter. We motivate this generalization by presenting theoretical and practical gains, both consequences of new flexible symmetric/asymmetric properties in a wide sense. Our main mathematical results are about stochastic ordering, uni/multimodality analysis, series expansions of crucial probability functions, probability weighted moments, raw and central moments, order statistics, and the maximum likelihood method. The special member of the family defined with the inverse Weibull distribution as baseline is highlighted. It constitutes a new four-parameter lifetime distribution which brightensby the multitude of different shapes of the corresponding probability density and hazard rate functions. Then, we use it for modelling purposes. In particular, a complete numerical study is performed, showing the efficiency of the corresponding maximum likelihood estimates by simulation work, and fitting three practical data sets, with fair comparison to six notable models of the literature.
Funder
Deanship of Scientific Research
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献