Multiple Aerodynamic Coefficient Prediction of Airfoils Using a Convolutional Neural Network

Author:

Chen Hai,He Lei,Qian Weiqi,Wang Song

Abstract

Both symmetric and asymmetric airfoils are widely used in aircraft design and manufacture, and they have different aerodynamic characteristics. In order to improve flight performance and ensure flight safety, the aerodynamic coefficients of these airfoils must be obtained. Various methods are used to generate aerodynamic coefficients. The prediction model is a promising method that can effectively reduce cost and time. In this paper, a graphical prediction method for multiple aerodynamic coefficients of airfoils based on a convolutional neural network (CNN) is proposed. First, a transformed airfoil image (TAI) was constructed by using the flow-condition convolution with the airfoil image. Next, TAI was combined with the original airfoil image to form a composite airfoil image (CAI) that is used as the input of the CNN prediction model. Then, the structure and parameters of the prediction model were designed according to CAI features. Finally, a sample set that was generated on the basis of the deformation of symmetrical airfoil NACA 0012 was used to train and test the prediction model. Simulation results showed that the proposed method based on CNN could simultaneously predict the pitch-moment, drag, and lift coefficients, and prediction accuracy was high.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference18 articles.

1. Aerodynamic coefficient prediction of airfoil using BP neural network;Jihong;Adv. Aeronaut. Sci. Eng.,2010

2. Simulation of Airfoil Plunging Aerodynamic Parameter Prediction Based on Neural Network;Xin;Comput. Simul.,2015

3. Efficient aerodynamic design through evolutionary programming and support vector regression algorithms

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3