SCFH: A Student Analysis Model to Identify Students’ Programming Levels in Online Judge Systems

Author:

Xu Bin,Yan Sheng,Jiang Xin,Feng Shaoge

Abstract

Computer basic teaching is an essential basic learning content in higher education teaching. In order to encourage students and enable them to practice and improve their programming ability, the online judge system has been introduced into the programming course for compiling, executing and evaluating the algorithm source code submitted by students. The asymmetry of students’ programming level is an important issue when teachers guide the programming of online judge system. We used the exploratory factor analysis method to identify the potential variable structure from the log data submitted by the students of the online judge system, and evaluate the programming level of the students to predict the “at risk” learners. We proposed a student participation model, SCFH, based on this variable structure. Using the log data of the students in the C language course and their final exam results, we trained a deep neural network based on SCFH to divide the students into three different grades, namely “risky”, “intermediate” and “advanced”. To verify the validity of the model, we used the prediction model to classify students in another C++ language programming course. The results show that the submission log data model SCFH can be used to predict the programming ability of students, and the validity of these results can be tested by examination results.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference22 articles.

1. Competitive learning in informatics: The uva online judge experience;Revilla;Olymp. Inform.,2008

2. Feasibility study on evaluation of audience’s concentration in the classroom with deep convolutional neural networks;Yoshihashi,2014

3. Mining educational data to analyze students’ performance;Baradwaj;arXiv,2012

4. Analysis and mining of educational data for predicting the performance of students;Pal;Int. J. Electron. Comput. Eng.,2013

5. An automatic grading scheme for simple programming exercises

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3