Abstract
During the autumn of 2017, a study was conducted to assess the zooplankton community composition in three sections (two latitudinal, going from Japan to the equator, and one longitudinal on the equator) of the Western Pacific Ocean. A total of 384 species of zooplankton adults and 21 groups of zooplankton larvae were identified, with copepods being the predominant taxon. The common dominant species across the three sections were Acrocalanus gibber, Canthocalanus pauper, Oithona similis, Paracalanus aculeatus, and Oncaea venusta. Zooplankton abundance was the highest in the equator section, with a mean abundance of 258.94 ± 52.57 ind./m3. Comparatively, a low abundance was recovered from the Subtropical Countercurrent (STCC) region, while the highest abundance holding stations were located in the eastern equatorial and North Equatorial Countercurrent (NECC) regions. Pearson’s correlation, canonical correspondence analysis, and other methods were used to analyze the relationship between environmental factors and zooplankton. We found that the Shannon–Wiener diversity index and Pielou’s uniformity index were significantly correlated (p < 0.05) with concentrations of nitrite and chlorophyll a. The distribution of zooplankton was also limited by nutrients, chlorophyll a, and dissolved oxygen. In addition, we reveal differences in the abundance of species in the equatorial and latitudinal seas. We found that not only temperature and nutrient salinity, but also ocean currents and the movement of water masses, influence the distribution of zooplankton communities in the Western Pacific.
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献