Abstract
Adsorbent made by carbonization of biomass under oxygen-limited conditions has become a promising material for wastewater treatment owing to its cost-effective, simple, and eco-friendly processing method. Ultrasound is considered a green technique to modify carbon materials because it uses water as the solvent. In this study, a comparison of Reactive Black 5 (RB5) adsorption capacity between biochar (BC) generated by pyrolysis of water bamboo (Zizania latifolia) husks at 600 °C and ultrasound-assisted biochar (UBC) produced by pyrolysis at 600 °C assisted by ultrasonic irradiation was performed. UBC showed a greater reaction rate and reached about 80% removal efficiency after 4 h, while it took 24 h for BC to reach that level. Scanning electron microscope (SEM) images indicated that the UBC morphology surface was more porous, with the structure of the combination of denser mesopores enhancing physiochemical properties of UBC. By Brunauer, Emmett, and Teller (BET), the specific surface areas of adsorbent materials were analyzed, and the surface areas of BC and UBC were 56.296 m2/g and 141.213 m2/g, respectively. Moreover, the pore volume of UBC was 0.039 cm3/g, which was higher than that of BC at 0.013 cm3/g. The adsorption isotherms and kinetics revealed the better fits of reactions to Langmuir isotherm and pseudo-second-order kinetic model, indicating the inclination towards monolayer adsorption and chemisorption of RB5 on water bamboo husk-based UBC.
Funder
Ministry of Education (MOE), Taiwan
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献