Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance

Author:

Cantón Yolanda,Chamizo Sonia,Rodriguez-Caballero EmilioORCID,Lázaro Roberto,Roncero-Ramos BeatrizORCID,Román José RaúlORCID,Solé-Benet Albert

Abstract

Arid and semi-arid ecosystems are characterized by patchy vegetation and variable resource availability. The interplant spaces of these ecosystems are very often covered by cyanobacteria-dominated biocrusts, which are the primary colonizers of terrestrial ecosystems and key in facilitating the succession of other biocrust organisms and plants. Cyanobacterial biocrusts regulate the horizontal and vertical fluxes of water, carbon and nutrients into and from the soil and play crucial hydrological, geomorphological and ecological roles in these ecosystems. In this paper, we analyze the influence of cyanobacterial biocrusts on water balance components (infiltration-runoff, evaporation, soil moisture and non-rainfall water inputs (NRWIs)) in representative semiarid ecosystems in southeastern Spain. The influence of cyanobacterial biocrusts, in two stages of their development, on runoff-infiltration was studied by rainfall simulation and in field plots under natural rainfall at different spatial scales. Results showed that cover, exopolysaccharide content, roughness, organic carbon, total nitrogen, available water holding capacity, aggregate stability, and other properties increased with the development of the cyanobacterial biocrust. Due to the effects on these soil properties, runoff generation was lower in well-developed than in incipient-cyanobacterial biocrusts under both simulated and natural rainfall and on different spatial scales. Runoff yield decreased at coarser spatial scales due to re-infiltration along the hillslope, thus decreasing hydrological connectivity. Soil moisture monitoring at 0.03 m depth revealed higher moisture content and slower soil water loss in plots covered by cyanobacterial biocrusts compared to bare soils. Non-rainfall water inputs were also higher under well-developed cyanobacterial biocrusts than in bare soils. Disturbance of cyanobacterial biocrusts seriously affected the water balance by increasing runoff, decreasing soil moisture and accelerating soil water loss, at the same time that led to a very significant increase in sediment yield. The recovery of biocrust cover after disturbance can be relatively fast, but its growth rate is strongly conditioned by microclimate. The results of this paper show the important influence of cyanobacterial biocrust in modulating the different processes supporting the capacity of these ecosystems to provide key services such as water regulation or erosion control, and also the important impacts of their anthropic disturbance.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference115 articles.

1. Dryland photoautotrophic soil surface communities endangered by global change

2. Biological Soil Crusts: An Organizing Principle in Drylands;Weber,2016

3. Biological Soil Crusts: Structure, Function and Management;Belnap,2003

4. Biological Soil Crusts: Ecology and Management, Department Series;Belnap,2001

5. Diversity, molecular phylogeny, and metabolic activity of cyanobacteria in biological soil crusts from Santiniketan (India)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3