An Experimental Study on Electrical Properties of Self-Sensing Mortar

Author:

Durairaj Ramkumar,Varatharajan ThirumuruganORCID,Srinivasan Satyanarayanan Kachabeswara,Gurupatham Beulah Gnana Ananthi,Roy KrishanuORCID

Abstract

Self-sensing cementitious composites are a combination of conventional materials used in the construction industry along with any type of electrically conductive filler material. Research has already been carried out with various types of conductive fillers incorporated into cement mortars to develop a self-sensing material. Carbon fibres have been used as conductive fillers in the past, which is uneconomical. In order to overcome this drawback, brass fibres have been introduced. This study concentrates on the behaviour of self-sensing mortar under two different curing conditions, including air and water curing. The main aim of this paper is to determine the self-sensing ability of various types of smart mortars. For this purpose, an experimental study was carried out, with the addition of various brass fibres of 0.10%, 0.15%, 0.20%, 0.25%, and 0.30% by volume, to determine the electrical properties of cementitious mortar. In addition, different combinations of brass and carbon fibres were considered, such as 95% brass fibre with 5% carbon fibre, 90% brass fibre with 10% carbon fibre, and 85% brass fibre with 15% carbon fibre by volume, to determine the piezoresistive behaviour. A fractional change in electrical resistance was determined for all the mortar cubes. A fractional change in electrical resistance (fcr) is defined as the change in its electrical resistance with respect to its initial resistance (ΔR/R). Additionally, the temperature effects on self-sensing mortar under compressive loading were observed for various temperatures from room temperature to 800 °C (at room temperature, 200 °C, 400 °C, 600 °C, and 800 °C). It was observed that the addition of brass fibre to the cement mortar as an electrically conductive filler improved the self-sensing ability of the mortar. After 28 days of water curing, when compared to conventional mortar, the percentage increase in change in electrical resistance (fcr) was observed to be 26.00%, 26.87%, 27.87%, 38.55%, and 35.00% for 0.10%, 0.15%, 0.20%, 0.25%, and 0.30% addition of brass fibres, respectively. When the smart mortar was exposed to elevated temperatures, the compressive strength of the mortar was reduced. Additionally, the fractional change in electrical resistance values was also reduced with the increase in temperature. In addition to this, the self-sensing ability of smart mortars showed improved performance in water curing rather than in air-cured mortars. Compressive strengths, stress, strain, and change in electrical resistance (fcr) values were determined in this study. Finally, microstructural analysis was also performed to determine the surface topography and chemical composition of the mortar with different fibre combinations.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3