Exploring the Efficacy of Base Data Augmentation Methods in Deep Learning-Based Radiograph Classification of Knee Joint Osteoarthritis

Author:

Prezja Fabi1ORCID,Annala Leevi23ORCID,Kiiskinen Sampsa1,Ojala Timo1

Affiliation:

1. Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

2. Faculty of Science, Department of Computer Science, University of Helsinki, 00014 Helsinki, Finland

3. Faculty of Agriculture and Forestry, Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland

Abstract

Diagnosing knee joint osteoarthritis (KOA), a major cause of disability worldwide, is challenging due to subtle radiographic indicators and the varied progression of the disease. Using deep learning for KOA diagnosis requires broad, comprehensive datasets. However, obtaining these datasets poses significant challenges due to patient privacy and data collection restrictions. Additive data augmentation, which enhances data variability, emerges as a promising solution. Yet, it’s unclear which augmentation techniques are most effective for KOA. Our study explored data augmentation methods, including adversarial techniques. We used strategies like horizontal cropping and region of interest (ROI) extraction, alongside adversarial methods such as noise injection and ROI removal. Interestingly, rotations improved performance, while methods like horizontal split were less effective. We discovered potential confounding regions using adversarial augmentation, shown in our models’ accurate classification of extreme KOA grades, even without the knee joint. This indicated a potential model bias towards irrelevant radiographic features. Removing the knee joint paradoxically increased accuracy in classifying early-stage KOA. Grad-CAM visualizations helped elucidate these effects. Our study contributed to the field by pinpointing augmentation techniques that either improve or impede model performance, in addition to recognizing potential confounding regions within radiographic images of knee osteoarthritis.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3