Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning

Author:

Aikodon Nosa1ORCID,Ortega-Martorell Sandra12ORCID,Olier Ivan12ORCID

Affiliation:

1. Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK

2. Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L3 3AF, UK

Abstract

Patients in Intensive Care Units (ICU) face the threat of decompensation, a rapid decline in health associated with a high risk of death. This study focuses on creating and evaluating machine learning (ML) models to predict decompensation risk in ICU patients. It proposes a novel approach using patient vitals and clinical data within a specified timeframe to forecast decompensation risk sequences. The study implemented and assessed long short-term memory (LSTM) and hybrid convolutional neural network (CNN)-LSTM architectures, along with traditional ML algorithms as baselines. Additionally, it introduced a novel decompensation score based on the predicted risk, validated through principal component analysis (PCA) and k-means analysis for risk stratification. The results showed that, with PPV = 0.80, NPV = 0.96 and AUC-ROC = 0.90, CNN-LSTM had the best performance when predicting decompensation risk sequences. The decompensation score’s effectiveness was also confirmed (PPV = 0.83 and NPV = 0.96). SHAP plots were generated for the overall model and two risk strata, illustrating variations in feature importance and their associations with the predicted risk. Notably, this study represents the first attempt to predict a sequence of decompensation risks rather than single events, a critical advancement given the challenge of early decompensation detection. Predicting a sequence facilitates early detection of increased decompensation risk and pace, potentially leading to saving more lives.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3