Intramolecular OHO Hydrogen Bonding in Dibenzoylmethane Enol: Raman Spectroscopic and Quantum Chemical Study

Author:

Kolesov Boris A.1,Pritchina Elena A.2ORCID,Tikhonov Aleksey Ya.3

Affiliation:

1. A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia

2. Faculty of Natural Sciences, Novosibirsk National Research State University, 630090 Novosibirsk, Russia

3. N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract

In the present work, the intramolecular O-H···O hydrogen bonding in 3-hydroxy-1,3-diphenylprop-2-en-1-one (keto-enol form of dibenzoylmethane, DBM) was investigated. For this purpose, the Raman spectra of polycrystalline samples of ordinary (H-DBM) and deuterated (D-DBM) 3-hydroxy-1,3-diphenylprop-2-en-1-one in the temperature range of 5–300 K were measured. It was found that low-temperature hydrogen bonding is extremely strong, the proton and deuteron are located in the midpoint of the O···O segment, and their ground and first excited vibrational states are located above the barrier U0 between the local minima. The vibrational frequencies, in this case, are 1543 and 1709 cm−1 for the proton and 1045 and 1087 cm−1 for the deuteron. As the temperature rises and the barrier height increases in H-DBM, the zero-point vibrational state of the proton begins to move into one of the local minima at T > 50 K, while the excited state remains in the broad single-well potential. The same is observed in D-DBM, but with a significant temperature delay. Compounds with donor (−OCH3) and acceptor (−NO2) substituents in the phenyl ring were also synthesized and their spectra were obtained. Both results confirm existing ideas about the nature of the extremely strong hydrogen bond. The quantum-chemical calculation of the vibrational spectrum of H-DBM and D-DBM is consistent with the experimental results.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3