Statistical Signatures of Quantum Contextuality

Author:

Hofmann Holger F.1ORCID

Affiliation:

1. Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi Hiroshima 739-8530, Japan

Abstract

Quantum contextuality describes situations where the statistics observed in different measurement contexts cannot be explained by a measurement of the independent reality of the system. The most simple case is observed in a three-dimensional Hilbert space, with five different measurement contexts related to each other by shared measurement outcomes. The quantum formalism defines the relations between these contexts in terms of well-defined relations between operators, and these relations can be used to reconstruct an unknown quantum state from a finite set of measurement results. Here, I introduce a reconstruction method based on the relations between the five measurement contexts that can violate the bounds of non-contextual statistics. A complete description of an arbitrary quantum state requires only five of the eight elements of a Kirkwood–Dirac quasiprobability, but only an overcomplete set of eleven elements provides an unbiased description of all five contexts. A set of five fundamental relations between the eleven elements reveals a deterministic structure that links the five contexts. As illustrated by a number of examples, these relations provide a consistent description of contextual realities for the measurement outcomes of all five contexts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3