Author:
Jin Yi,He Yulin,Huang Defa
Abstract
The nature of the kernel density estimator (KDE) is to find the underlying probability density function (p.d.f) for a given dataset. The key to training the KDE is to determine the optimal bandwidth or Parzen window. All the data points share a fixed bandwidth (scalar for univariate KDE and vector for multivariate KDE) in the fixed KDE (FKDE). In this paper, we propose an improved variable KDE (IVKDE) which determines the optimal bandwidth for each data point in the given dataset based on the integrated squared error (ISE) criterion with the L2 regularization term. An effective optimization algorithm is developed to solve the improved objective function. We compare the estimation performance of IVKDE with FKDE and VKDE based on ISE criterion without L2 regularization on four univariate and four multivariate probability distributions. The experimental results show that IVKDE obtains lower estimation errors and thus demonstrate the effectiveness of IVKDE.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献