Attention-Based Joint Training of Noise Suppression and Sound Event Detection for Noise-Robust Classification

Author:

Son Jin-YoungORCID,Chang Joon-HyukORCID

Abstract

Sound event detection (SED) recognizes the corresponding sound event of an incoming signal and estimates its temporal boundary. Although SED has been recently developed and used in various fields, achieving noise-robust SED in a real environment is typically challenging owing to the performance degradation due to ambient noise. In this paper, we propose combining a pretrained time-domain speech-separation-based noise suppression network (NS) and a pretrained classification network to improve the SED performance in real noisy environments. We use group communication with a context codec method (GC3)-equipped temporal convolutional network (TCN) for the noise suppression model and a convolutional recurrent neural network for the SED model. The former significantly reduce the model complexity while maintaining the same TCN module and performance as a fully convolutional time-domain audio separation network (Conv-TasNet). We also do not update the weights of some layers (i.e., freeze) in the joint fine-tuning process and add an attention module in the SED model to further improve the performance and prevent overfitting. We evaluate our proposed method using both simulation and real recorded datasets. The experimental results show that our method improves the classification performance in a noisy environment under various signal-to-noise-ratio conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Robustness in Audio Visual Speech Recognition: A preprocessing approach with Transformer and CTC Loss;2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE);2024-05-16

2. Audio-visual speech recognition based on joint training with audio-visual speech enhancement for robust speech recognition;Applied Acoustics;2023-08

3. Adaptive Noise Reduction Algorithm Based on SPP and NMF for Environmental Sound Event Recognition under Low-SNR Conditions;Wireless Communications and Mobile Computing;2023-01-21

4. A Multi-Objective Learning Noise Suppression Algorithm Based on CNN-2TCN for Environmental Sound;2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI);2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3