On the Use of the AIRA-UAS Corpus to Evaluate Audio Processing Algorithms in Unmanned Aerial Systems

Author:

Rascon CalebORCID,Ruiz-Espitia OscarORCID,Martinez-Carranza JoseORCID

Abstract

Audio analysis over an Unmanned Aerial Systems (UAS) is of interest it is an essential step for on-board sound source localization and separation. This could be useful for search & rescue operations, as well as for detection of unauthorized drone operations. In this paper, an analysis of the previously introduced Acoustic Interactions for Robot Audition (AIRA)-UAS corpus is presented, which is a set of recordings produced by the ego-noise of a drone performing different aerial maneuvers and by other drones flying nearby. It was found that the recordings have a very low Signal-to-Noise Ratio (SNR), that the noise is dynamic depending of the drone’s movements, and that their noise signatures are highly correlated. Three popular filtering techniques were evaluated in this work in terms of noise reduction and signature extraction, which are: Berouti’s Non-Linear Noise Subtraction, Adaptive Quantile Based Noise Estimation, and Improved Minima Controlled Recursive Averaging. Although there was moderate success in noise reduction, no filter was able to keep intact the signature of the drone flying in parallel. These results are evidence of the challenge in audio processing over drones, implying that this is a field prime for further research.

Funder

Royal Society

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drone Audition: Sound Source Localization Using On-Board Microphones;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2022

2. Research on Intelligent Retrieval Model of Multilingual Text Information in Corpus;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2022

3. A Review on Auditory Perception for Unmanned Aerial Vehicles;Sensors;2020-12-18

4. Multi-unmanned aerial vehicle multi acoustic source localization;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2020-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3