Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy

Author:

Wei ,Yuan ,Yu ,Huang ,Cao

Abstract

: In this study, in order to solve the difficulty of the inversion of soil arsenic (As) content using laboratory and field reflectance spectroscopy, we examined the transferability of the prediction method. Sixty-three soil samples from the Daye city area of the Jianghan Plain region of China were taken and studied in this research. The characteristic wavelengths of soil As content were then extracted from the full bands based on iteratively retaining informative variables (IRIV) coupled with Spearman’s rank correlation analysis (SCA). Firstly, the IRIV algorithm was used to roughly select the original spectral data. Gaussian filtering (GF), first derivative (FD) filtering, and gaussian filtering again (GFA) pretreatments were then used to improve the correlation between the spectra and soil As content. A subset with absolute correlation values greater than 0.6 was then retained as the optimal subset after each pretreatment. Finally, partial least squares regression (PLSR), Bayesian ridge regression (BRR), ridge regression (RR), kernel ridge regression (KRR), support vector machine regression (SVMR), eXtreme gradient boosting (XGBoost) regression, and random forest regression (RFR) models were used to estimate the soil As values using the different characteristic variables. The results showed that, compared with the traditional method based on IRIV, using the characteristic bands selected by the IRIV-SCA method can effectively improve the prediction accuracy of the models. For the laboratory spectra experiment stage, the six most representative characteristic bands were selected. The performance of IRIV-SCA-SVMR was found to be the best, with the coefficient of determination (R2), root-mean-square error (RMSE), and mean absolute error (MAE) in the validation set being 0.97, 0.22, and 0.11, respectively. For the field spectra experiment stage, the 12 most representative characteristic bands were selected. The performance of IRIV-SCA-XGBoost was found to be the best, with the R2, RMSE, and MAE in the validation set being 0.83, 0.35, and 0.29, respectively. The accuracy and stability of the inversion of soil As content are significantly improved by the use of the proposed method, and the method could be used to provide accurate data for decision support for the treatment and recovery of As pollution over a large area.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Special Projects for Technological Innovation in Hubei

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3