Optimization and Design of a Flexible Droop Nose Leading Edge Morphing Wing Based on a Novel Black Widow Optimization (B.W.O.) Algorithm—Part II

Author:

Bashir Musavir,Longtin-Martel Simon,Zonzini NicolaORCID,Botez Ruxandra MihaelaORCID,Ceruti AlessandroORCID,Wong TonyORCID

Abstract

This work presents an aerodynamic and structural optimization for a Droop Nose Leading Edge Morphing airfoil as a high lift device for the UAS-S45. The results were obtained using three optimization algorithms: coupled Particle Swarm Optimization-Pattern Search, Genetic Algorithm, and Black Widow Optimization algorithm. The lift-to-drag ratio was used as the fitness function, and the impact of the choice of optimization algorithm selection on the fitness function was evaluated. The optimization was carried out at various Mach numbers of 0.08, 0.1, and 0.15, respectively, and at the cruise and take-off flight conditions. All these optimization algorithms obtained effectively comparable lift-to-drag ratio results with differences of less than 0.03% and similar airfoil geometries and pressure distributions. In addition, an unsteady analysis of a Variable Morphing Leading Edge airfoil with a dynamic meshing scheme was carried out to study its flow behaviour at different angles of attack and the feasibility of leading-edge downward deflection as a stall control mechanism. The numerical results showed that the variable morphing leading edge reduces the flow separation areas over an airfoil and increases the stall angle of attack. Furthermore, a preliminary investigation was conducted into the design and sensitivity analysis of a morphing leading-edge structure of the UAS-S45 wing integrated with an internal actuation mechanism. The correlation and determination matrices were computed for the composite wing geometry for sensitivity analysis to obtain the parameters with the highest correlation coefficients. The parameters include the composite material qualities, thickness, ply angles, and the ply stacking sequence. These findings can be utilized to design the flexible skin optimization framework, obtain the target droop nose deflections for the morphing leading edge, and design an improved model.

Funder

Canada Research Chairs

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference58 articles.

1. Morphing wing, UAV and aircraft multidisciplinary studies at the Laboratory of Applied Research in Active Controls, Avionics and AeroServoElasticity LARCASE;Botez;Aerosp. Lab,2018

2. Flight trajectory optimization to reduce fuel burn and polluting emissions using a performance database and ant colony optimization algorithm;Hamy;Proceedings of the AEGATS ‘16 Advanced Aircraft Efficiency in a Global Air Transport System,2016

3. Morphing wings review: aims, challenges, and current open issues of a technology

4. Laminar flow control on a research wing project presentation covering a three year period;Botez;Proceedings of the Canadian Aeronautics and Space Institute Annual General Meeting,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3