Secured Multi-Dimensional Robust Optimization Model for Remotely Piloted Aircraft System (RPAS) Delivery Network Based on the SORA Standard

Author:

Mahmoodi ArminORCID,Hashemi LeilaORCID,Laliberté JeremyORCID,Millar Richard C.

Abstract

The range of applications of RPAs in various industries indicates that their increased usage could reduce operational costs and time. Remotely piloted aircraft systems (RPASs) can be deployed quickly and effectively in numerous distribution systems and even during a crisis by eliminating existing problems in ground transport due to their structure and flexibility. Moreover, they can also be useful in data collection in damaged areas by correctly defining the condition of flight trajectories. Hence, defining a framework and model for better regulation and management of RPAS-based systems appears necessary; a model that could accurately predict what will happen in practice through the real simulation of the circumstances of distribution systems. Therefore, this study attempts to propose a multi-objective location-routing optimization model by specifying time window constraints, simultaneous pick-up and delivery demands, and the possibility of recharging the used batteries to reduce, firstly, transport costs, secondly, delivery times, and thirdly, estimated risks. Furthermore, the delivery time of the model has been optimized to increase its accuracy based on the uncertain conditions of possible traffic scenarios. It is also imperative to note that the assessment of risk indicators was conducted based on the Specific Operations Risk Assessment (SORA) standard to define the third objective function, which was conducted in a few previous studies. Finally, it shows how the developed NSGA-II algorithm in this study performed successfully and reduced the objective function by 31%. Comparing the obtained results using an NSGA-II meta-heuristic approach, through the rigorous method GAMS, indicates that the results are valid and reliable.

Funder

Carleton University

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference59 articles.

1. Parcel Delivery: The Future of Last Mile;Joerss,2016

2. The hybrid vehicle-drone routing problem for pick-up and delivery services

3. Wide-Area Vehicle-Drone Cooperative Sensing: Opportunities and Approaches

4. Blockchain-based IoT platform for autonomous drone operations management;Dawaliby;Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond,2020

5. Design of the life-ring drone delivery system for rip current rescue;Xiang;Proceedings of the 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS),2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3