Load-Settlement Curve and Subgrade Reaction of Strip Footing on Bi-Layered Soil Using Constitutive FEM-AI Coupled Techniques

Author:

Ebid Ahmed M.ORCID,Onyelowe Kennedy C.ORCID,Salah MohamedORCID

Abstract

This study presents a hybrid Artificial Intelligence-Finite Element Method (AI-FEM) predictive model to estimate the modulus of a subgrade reaction of a strip footing rested on a bi-layered profile. A parametric study was carried out using 2D Plaxis FEM models for strip footings with width (B) and rested on a bi-layered profile with top layer thickness (h) and bottom layer thickness (H). The soil was modeled using the well-known Mohr-Coulomb’s constitutive law. The extracted load-settlement curve from each FEM model is approximated to hyperbolic function and its factors (a, b) were determined. The subgrade reaction value (Ks) is the (stress/settlement), hence (1/Ks = a·Δ + b). Both inputs and outputs of the parametric study were collected in a single database containing the geometrical factors (B, h & H), soil properties of the top and bottom layers (c, φ & γ) and the extracted hyperbolic factors (a, b). Finally, three AI techniques—Genetic Programming (GP), Evolutionary Polynomial Regression (EPR) and Artificial Neural Networks (ANN)—were implemented to develop three predictive models to estimate the values of (a, b) using the collected database. The three developed models showed different accuracy values of (50%, 65% and 80%) for (GP, EPR and ANN), respectively. The innovation of the developed model is its ability to capture the degradation of a subgrade reaction by increasing the stress (or the settlement) according to the hyperbolic formula.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference17 articles.

1. Analysis of a strip footing using constitutive law;Biswas;Geosciences,2016

2. Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems

3. Estimation of Bearing Capacity of Strip Footing Rested on Bilayered Soil Profile Using FEM-AI-Coupled Techniques

4. Load-settlement characteristics of reinforced and unreinforced foundation soil;Manisana;Int. J. Eng. Res. Technol.,2014

5. Load-Settlement Characteristics of Tropical Red Soils of Southern Nigeria

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3