Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau

Author:

Wu Qianhan,Liu Kai,Song Chunqiao,Wang Jida,Ke LinghongORCID,Ma Ronghua,Zhang Wensong,Pan Hang,Deng Xinyuan

Abstract

In order to satisfy the needs of constant economic growth, the pressure to exploit natural resources has been increasing rapidly in China. Particularly with the implementation of the National Western Development Strategies since 1999, more and more mining activities and related infrastructure constructions have been conducted on the Tibetan Plateau (TP). Mining activities are known to have substantial impacts on plant dynamics and hence the water and energy cycles. Identifying mining activities and quantifying their effects on vegetation cover are critical to the monitoring and protection of the pristine TP environment. Thus, this study aims to develop an automated approach that detects the timing of initial mining development and assess the spatial distribution of mining-ruined vegetation. The Breaks for Additive Seasonal and Trend (BFAST) algorithm was used to decompose the signal in the normalized difference vegetation index (NDVI) time series derived from high-frequency MODIS images, and to detect abrupt changes of surface vegetation. Results show that the BFAST algorithm is able to effectively identify abrupt changes in vegetation cover as a result of open-mining development on the studied alpine grassland. The testing study in Muli Town of Qinghai Province shows that the mining development began in 2003 and massive destructions of vegetation cover followed between 2008 and 2012. The integrated use of Landsat imagery and multi-temporal DEMs further reveals detailed areal and volumetric changes in the mining site. This study demonstrates the potential of applying multi-mission satellite datasets to assess large-scale environmental influences from mining development, and will be beneficial to environmental conservation and sustainable use of natural resources in remote regions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3