Research on Point Cloud Acquisition and Calibration of Deep Hole Inner Surfaces Based on Collimated Ring Laser Beams

Author:

Du Huifu12ORCID,Zhao Xiaowei12ORCID,Yu Daguo12ORCID,Shi Hongyan3,Zhou Ziyang1

Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China

2. Shanxi Deep Hole Processing Engineering Technology Research Center, Taiyuan 030051, China

3. Department of Mechanical Engineering, Shanxi Engineering Vocational College, Taiyuan 030051, China

Abstract

In this study, a ring light point cloud calibration technique based on collimated laser beams is developed, aiming to reduce errors caused by the position and attitude changes of traditional ring light measurement devices. This article details the generation mechanism of the ring beam and the principle of deep hole measurement. It introduces the collimated beam as a reference, building on traditional ring light measurement devices, to achieve the synchronous acquisition of the ring beam and collimated spot images by an industrial camera. The Steger algorithm is employed to accurately extract the coordinates of the point cloud contours of both the ring beam and the collimated spot. By analyzing the shape and position changes of the collimated spot contour, the spatial position and attitude of the measuring device are precisely determined. This technique is applied to the 3D reconstruction of the inner surface of deep holes, ensuring the accurate restoration of the spatial positional attitude of the ring beam by incorporating the spatial positional attitude parameters of the measuring device to precisely calibrate the cross-sectional point cloud coordinates. Experimental results with ring gauges and deep hole workpieces demonstrate that this technique effectively reduces the percentage of point cloud data outside the tolerance range, and improves the accuracy of the 3D reconstruction model by 6.287%, thereby verifying the accuracy and practicality of this technique.

Funder

National Natural Science Foundation of China

Central Guidance for Local Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3