Abstract
In this study, we investigated the phonon blockade effect in a parametrically driven and dissipative acoustic cavity at finite temperature. With the approximated analytical results based on the steady-state density-matrix master equation, we found that a quantum-interference-induced phonon blockade exists at finite temperature. We found a crossover between the quantum and thermal regimes on the curve of the second-order correlation function of the acoustic mode as the temperature increases. This phenomenon implies an asymmetry about the quantum and classic regimes. We also numerically simulated the single-phonon emission using the Monte Carlo wave function method. The results showed that a wide and deep dip around the zero time delay exists on the curve of the time-delayed second-order correlation function, which implies the possibility of observing a strong phonon blockade with pulse driving. Our study outlines a potential candidate for a efficient single-phonon source and applications in quantum information and phononic quantum networks.
Funder
National Natural Science Foundation of China
Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province
the Natural Science Foundation of Jiangxi Province
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献