Deep Reinforcement Learning-Based Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing Environments

Author:

Cui Tongke1,Yang Ruopeng1,Fang Chao2ORCID,Yu Shui3

Affiliation:

1. College of Information and Communication, National University of Defense Technology, Changsha 410073, China

2. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

3. School of Computer Science, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

With the emergence of intelligent terminals, the Internet of Vehicles (IoV) has been drawing great attention by taking advantage of mobile communication technologies. However, high computation complexity, collaboration communication overhead and limited network bandwidths bring severe challenges to the provision of latency-sensitive IoV services. To overcome these problems, we design a cloud-edge cooperative content-delivery strategy in asymmetrical IoV environments to minimize network latency by providing optimal computing, caching and communication resource allocation. We abstract the joint allocation issue of heterogeneous resources as a queuing theory-based latency minimization objective. Next, a new deep reinforcement learning (DRL) scheme works in each network node to achieve optimal content caching and request routing on the basis of the perceptive request history and network state. Extensive simulations show that our proposed strategy has lower network latency compared with the current solutions in the cloud-edge collaboration system and converges fast under different scenarios.

Funder

Beijing Nova Program of Science and Technology

Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3