Uncertain Sensor–Weapon–Target Allocation Problem Based on Uncertainty Theory

Author:

Li Guangjian,He Guangjun,Zheng Mingfa,Zheng AoyuORCID

Abstract

The sensor–weapon–target allocation (S-WTA) is a typical collaborative task allocation problem involved in network-centric warfare (NCW). The existing related studies have a limitation to the nature of cooperation and uncertainty in an air defense battle scenario, and most existing models have the assumption that they are determinate, i.e., the parameters in them are known certainly. For the actual battlefield environment, the asymmetric information in it could lead to the failure of the above assumption, and there are many uncertainties whose frequency can not be evaluated objectively. Based on uncertainty theory, this paper studied the S-WTA problem in an indeterminate battlefield environment. First, we analyze the uncertain factors existing in the actual battlefield environment and their influence on the S-WTA problem, and by considering the threat value of the target, the deviation parameters of the sensor tracking performance and weapon interception performance as uncertain variables, we then establish an uncertain S-WTA (USWTA) model, where the destruction value to targets is regarded as an objective function and four categories of typical constraints are set. Further, an equivalent transformation is presented to convert the unsolvable model into a determinate one by the expected value principle. To solve the proposed model efficiently, a permutation-based representation for the allocation scheme of the USWTA problem is introduced firstly, which can construct a feasible solution efficiently, and on this basis, a constructive heuristic algorithm based on maximum marginal return rule (MMRCH) is designed to construct a feasible solution with high quality. Additionally, a local search (LS) operation is proposed to explore for the better solution locally and further improve the quality of solution obtained by MMRCH. Finally, a set of instances are set to be solved by the designed algorithm, and the simulation experiment demonstrates the superiority of the designed algorithm and the feasibility of the proposed model.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3