Characterizations of Chemical Networks Entropies by K-Banhatii Topological Indices

Author:

Ghani Muhammad UsmanORCID,Campena Francis Joseph H.ORCID,Ali ShahbazORCID,Dehraj Sanaullah,Cancan MuratORCID,Alharbi Fahad M.,Galal Ahmed M.ORCID

Abstract

Entropy is a thermodynamic function in physics that measures the randomness and disorder of molecules in a particular system or process based on the diversity of configurations that molecules might take. Distance-based entropy is used to address a wide range of problems in the domains of mathematics, biology, chemical graph theory, organic and inorganic chemistry, and other disciplines. We explain the basic applications of distance-based entropy to chemical phenomena. These applications include signal processing, structural studies on crystals, molecular ensembles, and quantifying the chemical and electrical structures of molecules. In this study, we examine the characterisation of polyphenylenes and boron (B12) using a line of symmetry. Our ability to quickly ascertain the valences of each atom, and the total number of atom bonds is made possible by the symmetrical chemical structures of polyphenylenes and boron B12. By constructing these structures with degree-based indices, namely the K Banhatti indices, ReZG1-index, ReZG2-index, and ReZG3-index, we are able to determine their respective entropies.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3