High-Frequency Ultrasonic Radiator Power Increase by Means of Summation of Vibrations of Symmetrically Arranged Langevin Transducers

Author:

Khmelev Vladimir N.,Shalunov Andrey V.,Nesterov Victor A.,Bochenkov Alexander S.

Abstract

The article focuses on the research of processes of summation of ultrasonic vibrations of individual Langevin transducers symmetrically arranged on a common summator. This design could be used to solve the problem of increasing the power of a high-frequency ultrasonic radiator by means of the summation of the vibrations of individual Langevin transducers. The results of the presented theoretical and experimental investigations supported the possibility of summation of symmetrical diametrical vibrations when they are transformed into longitudinal vibrations. As a result, a new design scheme for high-frequency radiator construction was developed that provides symmetry and uniformity of vibration amplitude distribution of piezoceramic elements. This made it possible to eliminate the damage of piezoceramic elements. The article establishes that an acoustic power (continuous mode) of 1450 W at an efficiency of 78% is achieved when the vibrations from 9 to 11 of symmetrically arranged Langevin transducers at a resonant frequency of 30.05 kHz with an amplitude of 26 µm are summed. The use of this ultrasonic high-frequency radiator with increased power will provide intensification of processes in various areas of industry.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3