Status and Prospect of Drilling Fluid Loss and Lost Circulation Control Technology in Fractured Formation

Author:

Yang Jingbin,Sun Jinsheng,Bai YingruiORCID,Lv Kaihe,Zhang Guodong,Li Yuhong

Abstract

Lost circulation in fractured formation is the first major technical problem that restricts improvements in the quality and efficiency of oil and gas drilling engineering. Improving the success rate of one-time lost circulation control is an urgent demand to ensure “safe, efficient and economic” drilling in oilfields all over the world. In view of the current situation, where drilling fluid loss occurs and the plugging mechanism of fractured formation is not perfect, this paper systematically summarizes the drilling fluid loss mechanism and model of fractured formation. The mechanism and the main influencing factors to improve the formation’s pressure-bearing capacity, based on stress cage theory, fracture closure stress theory, fracture extension stress theory and chemical strengthening wellbore theory, are analyzed in detail. The properties and interaction mechanism of various types of lost circulation materials, such as bridging, high water loss, curable, liquid absorption and expansion and flexible gel, are introduced. The characteristics and distribution of drilling fluid loss in fractured formation are also clarified. Furthermore, it is proposed that lost circulation control technology for fractured formation should focus on the development of big data and intelligence, and adaptive and efficient intelligent lost circulation material should be continuously developed, which lays a theoretical foundation for improving the success rate of lost circulation control in fractured formation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3